martes, 20 de noviembre de 2012

M2C2A: Episode 19: Definition of factorial (but about the things most people don't know), an adventure ranging from elementary calculations, to calculus itself.

For this adventure, I will have a friend:
-So now you're involving me?Yes, I am.
Now, to start: "What is a factorial?"
-A factorial?
That's easy:
When you say x! (x factorial), you mean the multiplication of all integers bigger than 1 up to itself.
For example, 4! is equal to 2x3x4, or 24,
7! is equal to 2x3x4x5x6x7, or 5040,
and 15!=2x3x4x5x6x7x8x9x10x11x12x13x14x15, or 1,307,674,368,000.
-Whoa, factorials grow fast.
Yes, factorials do grow pretty fast. Here's a list of the factorials of some small integers:
  • 0!=1
  • 1!=1
  • 2!=2
  • 3!=6
  • 4!=24
  • 5!=120
  • 6!=720
  • 7!=5040
  • 8!=40320
  • 9!=362880
  • 10!=3628800
-But why 0! is equal to 1?
A property about integer factorials is that (x-1)!=x!/x.
So if we make x equal to 1, 0!=1!/1, or simply 1.
-But what about -1!, or -2!, or...
If x=0, we eventually get that -1! is 1/0.
-1/0? That's a problem.
Next, if x=-1, we get that -2!=-1/(1/0), but...
-That is equal to -1/1 * 0/1, or... 0!
That should be right, but calculators will give the answers for all of these values as "INFINITY" or "NEGATED VALUE".
-But we can still try to get our own values, can we?
Actually, that's what M2C2A is all about. And using this formula, -3! should be 1/0, and -4! should be 0... 
-But what about 1.5!, or 7.345!?
Luckily, I don't have to figure that out, because for positive integers, there is a formula for factorials. For positive numbers, it is:
            ∞
(z-1)!= ∫  tz-1 e-t dt
           0
-WHAT THE...?!
Don't worry, we'll examine the formula one by one part.
-But wait, why (z-1)! and not z!?
(z-1)! is the same as Γ(z), pronounced as "the gamma function of z".
- Next, what is that thing that looks like a "s"?
It is an integral. It is used mainly in calculus.
-WAIT? ARE WE GOING INTO CALCULUS RIGHT NOW?
Yes. We're going into calculus right now.
-Aww...
Don't worry, it isn't as bad as you think.
-Yeah you say so...
I really don't think it's going to WHOA-RK!
Where are we now?
A world, a very strange world, could be seen. It was a line.
We're in the graph of 2x=y 2x=y. And we're going to get the integral of this.
First, to write "the integral of 2x=y", we're going to use only "2x".
-BUT WHAT THE WHAT, WHERE, OR WHO IS AN INTEGRAL?!
It is only the calculation of the area between the line of a graph and the x-axis.
-Please speak English.
What I said only means this! The integral time!
Suddenly, the graph started shaking, and from nothing, something blue appeared, between the bottom line, and the previous line.
The line at the bottom just turned out to be the x-axis. And we need to calculate the area that is below the blue line.
-But what is our range?
Here, x will go from 0 to 1, and we need to get the area of the triangle below 2x=y, or simply, 2x, so we can write this as:
1
∫ 2x dx
0
The 0 and the 1 specify the range, 2x represents the equation for which we will find the area, and dx only specifies the variable (after the d), x.
So, using the formula for the area of a triangle, because the width is 1, and the height is 2, the integral equals...
-1!
Correct, it equals 1. But that would actually be cheating, for how do we get the integral for something more complicated. For example:
1
∫ 4x^3 dx
0
-Hey! It is impossible to define that! The equation isn't a geometrical shape!
That's right...
But incorrect.
A whistle was heard. Suddenly, a seemingly never-ending stampede of something could be heard at a distance.
That something was:
-Paper strips?!
Each paper strip accommodated itself in the graph. They had base 0.25 and height that would accommodate to the graph's height. But many of the graph's space wasn't filled.

-We can't use you to calculate the area, or can we?
We can! Make the base smaller!
Suddenly, the paper strips started to shrink their base to 0.10. But that wasn't enough.
-Shrink even more!
Wait. Couldn't we make the base 0 so everything could fit perfectly?
-No. Or else the area of the strips will disappear!
Exactly! You are beginning to understand infinitesimal calculus!
Let's make the area x:
lim
x->0
-And I thought I had it! What the heck is that?
Don't worry. That only means that x is ALMOST 0, but not exactly.
That is:
THE BASE OF THE STRIPS IS INFINITESIMALLY SMALL.


-But, what is the total area?
The total area is equal to:
1/z
Σ 2kz^2
k=1
-But what is z?
The variable "z" is the base of the strips. 
-And what does the formula mean?!
Σ means that we will be doing a summation, that is, make the variable specified on the lower range, k, be 1, calculate, be 2, calculate, add the previous result... The range of k will be from 1 to 1/z. That is because if the base of the strips is z and we need the value of all the strips bases together to be 1, then the number of strips is 1/z. For example, if our bases measure 0.0625, then the number of strips is 16.
-I get it. But why kz^2?
If the base is z, so the strips adjust to the formula the most possible, their height must be kz, and their area, kz*z=kz^2.
-But what do we do with the values?
First, let z be 0.5 just for this example. Now, the upper range is 2. If you calculate 2kz^2, which is...
-0.5!
...and then let k equal 2, calculate kz^2, and add it to your previous result, you get:-1.5!
Now, if you make z equal 0.25, you will eventually get:...-1.25!Now, let's try for z, 1/50. The answer is:....................-1.02!

And when z=1/9874564?
...................................................................
-AGRH!!! THERE MUST BE AN EASIER WAY!
Answer: There is!
Any series that starts in 1 and involves addition (for example, 1+2+3... +99+100) can be expressed as the following formula (x is the last number):
x
Σ k= (x+x^2)/2
k=1
So 1+2+3+4+5=(5+25)/2, or 15, 1+2+3+4+5...+99+100=(100+10000)/2=5050 and 1+2+3+4+5...+9876543209+9876543210=(9876543210+97546105778997104100)/2=48773052894436823655. So...

1/z
Σ 2kz^2
k=1
...is just equal to...
-WAIT! THIS ONLY APPLIES WHEN YOU ADD CONSECUTIVE NUMBERS!
Yes, but we can use a property of summations:
  b            b            b
  Σ cd=c  Σ d = d  Σ c

k=a        k=a        k=a
For example,
  3             3
  Σ 3k = 3 Σ k = 3+6+9=3(1+2+3)=3*1+3*2+3*3=3+6+9✓
k=1         k=1
Understood?
-Mainly.
Try to see clearly that set of equations and see if you can figure that out.
In the meantime, we can make

1/z
Σ 2kz^2
k=1
Into

       1/z
2z^2 Σ k
       k=1
Into
2z^2(1+2+3...+1/z)
Into
2z^2(1/z+(1/z)^2)/2
Into
z^2(1/z+1/z^2).
Into
z+1!
And that is our general equation!
If we make z=0.5, the equation spits:

-1.5!
If we make z=0.25, the formula says:-1.25!
If z=1/50, then the formula says:
-1+1/50!
And if z is infinitesimally long, then the formula says:
-1!
But why?
Let's recall the length is z.
So the total area is:
z+1
Now, let's say z is so close to 0, we can almost treat it like 0.
So z+1 could be treated as 0+1 or:
-1!
That was very interesting, but what do we do with:

          ∞
(z-1)!= ∫  tz-1 e-t dt
           0Answer: Use a calculator!
Why?: Because it may be one of the most ridiculous calculations ever!
See you next time!

-The Roaring Thunder



































































































martes, 6 de noviembre de 2012

¿Es mi hij@ sobresaliente, superdotado, genio?

Desde que inicié el recorrido en la investigación de este fabuloso mundo de la superdotación, para descubrir cuáles son sus limitaciones y sus ventajas y entender cómo apoyar a mi hijo. He encontrado que las definiciones de niños sobresalientes, son tan diversas y tan diferentes, como los mismos niños, por lo que es difícil entender si estamos todos hablando el mismo idioma y tenemos la misma idea de lo que estamos o queremos apoyar.
Por ejemplo, en México, de acuerdo con la Secretaría de Educación, la definición de niños con Aptitudes Sobresalientes es:
“Los niños con aptitudes sobresalientes son aquellos capaces de destacar significativamente del grupo social y educativo al que pertenecen, en uno o más de los campos del quehacer humano: científico-tecnológico, humanístico-social, artístico y/o de acción motriz, pero al presentar necesidades específicas requieren de un contexto facilitador que les permita desarrollar sus capacidades personales y satisfacer sus necesidades e intereses para su propio beneficio y el de la sociedad.” (Guía para familias. SEP.Programa de Fortalecimiento para la Educación Especial. Pag. 15)
Otra definición sería la de la Asociación Nacional para Niños Superdotados (Estados Unidos), (la cual ha recibido un sin número de quejas…)
“Los individuos superdotados son aquellos que demuestran niveles superiores de aptitud (definida como una habilidad excepcional para razonar y aprender) o competencia (desempeño documentado o logros superiores al 10% o poco fáciles de lograr) en uno o más dominios. Estos dominios incluyen cualquier area estructurada de actividad con sus propios sistemas de símbolos (por ejemplo, matemáticas, música, lenguaje) y/o un conjunto de habilidades sensorimotoras (por ejemplo, pintura, danza, deportes).”
No se ustedes, pero a mí estas definiciones terminan por parecerme ostentosas y la causa de muchas fricciones en la sociedad. Además fragmentan la definición del niño de acuerdo a sus resultados y no a quién en realidad “ES” en todos los aspectos. Porque ¿a poco un niño es sobresaliente sólo si saca una medalla en una competencia? O sólo hasta que va a la escuela y vemos que le va mejor en los exámenes que a otros. El mismo término “gifted” implica que el niño o la niña tiene algo que otros no tienen y que esto lo hace ser “superior” (o sobresaliente) a sus pares.
Empezando por ahí tenemos problemas.
Desde mi experiencia y mi humilde punto de vista ser sobresaliente no tiene que ver con una inteligencia superior (considerando que la Real Academia de la Lengua Española define como inteligencia la “capacidad de comprender y de resolver problemas”). Para mí, esto tiene que ver con el desarrollo neuronal acelerado… Sí ahí está, lo he dicho, todo mundo piensa que el niño sobresaliente es más inteligente, pero yo creo que es más desarrollado Winking smile¿ven la diferencia?.
La realidad de estos niños es muy diferente a la de sus compañeros. Es decir, son niños que por azares del destino genético, se desarrollan prematuramente en las áreas cognoscitivas. Algunos autores comparan este desarrollo intelectual a tener un cableado diferente,
“Los niños excepcionalmente superdotados tienen mentes cableadas en formas que los investigadores prácticamente no pueden describir“ (Extracto de Boy Genius set to become younges-ever grad of Independent Study High School Program. Joe Duggan. Hoagies Gifted)
Este cableado diferente los lleva a tener ventaja en el tiempo que tienen practicando o entendiendo conceptos que sus compañeros todavía no han visto. O lo que es lo mismo, su problema o ventaja es que tiene un desarrollo intelectual asincrónico, su edad mental es superior a su edad cronológica.
Por ejemplo, no creo que nadie piense que un niño de segundo de secundaria sea más inteligente que un niño de segundo de primaria, por el simple hecho de que está viendo más información que el pequeño. Simplemente se encuentran en diferentes etapas del desarrollo y es esperable que pueda hacer otras cosas por lo mismo.
Por eso la definición que me parece más acertada en cuanto a mi experiencia es la del Grupo Columbus.
“La superdotación es un desarrollo asincrónico en el cual se combinan habilidades cognoscitivas avanzadas y una intensidad ampliada, para crear experiencias internas y entendimientos que son cualitativamente diferentes de la norma. Esta asincronía se incrementa conforme mayor sea la capacidad intelectual. El que estos niños sean únicos, los hace particularmente vulnerables y los hace requerir modificaciones en la forma en que se crían, se les enseña y se les aconseja, para que puedan desarrollarse óptimamente( The Columbus Group, 1991, consultado en, Hoagies Gifted)
Usualmente leo cosas como “Todos los niños son superdotados” o una frase que me gusta mucho y que atribuyen a Albert Einstein,
image
(no encuentro quién es el autor de esta imagen, si alguien sabe quién es, le agradecería me avisara para darle el crédito apropiado).
La realidad es que sí, todos somos genios en un área u otra del desarrollo humano, a esto se le llama DIVERSIDAD, y es lo que ha hecho grande a la humanidad.
Pero es muy importante entender que cuando hablamos de sobresalientes estamos hablando de que existen estos niños “diferentes”, en riesgo, y que requieren de apoyo especial para poder florecer.
Es importantísimo entender que ellos no eligieron ser así, nacieron de esta manera y por lo tanto, no tienen la responsabilidad de venir a salvar al mundo, pero sí merecen tener los derechos básicos que tiene cualquier otro niños, entre ellos, el derecho a la educación.
Es por este motivo que como padres y maestros tenemos la responsabilidad de seguir investigando y entender cuáles son las necesidades que derivan de esta diferencia para poderles ofrecer mejores oportunidades de desarrollo intelectual, social y emocional.
-Eva

Recursos:

Guía para padres. http://www.educacionespecial.sep.gob.mx/pdf/tabinicio/2012/guia_para_familias.pdf
La mejor fuente de información sobre niños sobresalientes o superdotados: http://www.hoagiesgifted.org


















domingo, 4 de noviembre de 2012

M2C2A: Episode 16, Can we give a numerical value to 1/0?

Remember when some episodes ago we used P.I.G. (Patterns In Graphs)? We'll do it again.
What happens when you graph 1/x? You get a graph that looks like 2 rotated "L". You can see the closer x gets to 0, the closer y goes to ∞... but that if you look at the positive region!
For positive values of x, 1/x goes approaching ∞. For example:
1/1=1
1/0.1=10
1/0.01=100
...
But for negative values of x, 1/x goes approaching -∞. For example:
1/-1=-1
1/-0.1=-10
1/-0.01=-100
...
So which is it? ∞, or -∞?
It could be both.
Because 1/10x=10-x, then, 1/10-∞ should be equal to 10-∞ (And 10-∞ isn't ∞. That would be like saying 106 (1000000, a million) is equal to 6.), right? There are only 2 problems with that:
1) This could work for all bases, 1/10x=10-x is only a form of the more universal equation, 1/n^x=n^-x.
2) x-∞ can't be 0... Or can it?
x1=x, x0=1, but x-1=1/x, and x-2=1/x2, so does x-∞=1/x (which should definitely be larger than infinity if x>1)? Yes!
But what if you divide 1/<A number definitively bigger than infinity? It should give you a number with ∞ 0's...But is this 0? Think about this in this way, if this number had any digits after the 0's, it would have an end, and it would be infinite... So this is 0 after all! (hope I'm not breaking any kind of calculus law or something) But because x will only be infinite if x>1, the solution set for 1/0 would be 1/x only when x>1...
But our rule of 1/nx=n-x also applies to when x is positive...
So n=1/n-∞, But is n- also 0?
As you graph nx, when x is negative, the values tend to be 0 as x goes down. So the only thing logical is that:
n-∞=0!
So the solution set for 1/0 would be 1/x only when x>1 and x<-1.
-The Roaring Thunder























M2C2A: Episode 15, Thanks for all the π, but without an e there's no pie...

(Mayority of article by Wikipedia)
(Graph from Wolfram|Alpha)
(Series from Wolfram|Alpha)
Many of you might have heard of e, but not very well the definition. Here it is (for starters):
e=(1+1/∞)
No really, there's no typo. Well, in the other hand:
If you have the equation (1+1/n)n, If n is 1, you have (1+1/1)1, which is equal to 2. If n is 2, you get 2.25. If n is 4, you get 2.44140625... But as you go towards ∞, you get a number closer and closer to e (2.71828182845904523536028747135266249775724709369995...), and when you get to ∞, you get (apparently), e.
Aproximating e
Another thing, if a gambler plays a game with a probability of winning of n, n times, for a n that goes up to infinity, the probability of losing every bet is 1/e.
And the following gives e too:
  ∞
  Σ  1/k!
k=0
  ∞
  Σ  ((k-1)2)/k!
k=0
  ∞
  Σ  (2k+1)/(2k)!
k=0

1/2(Σ (k+1)/k!)
     k=0

Σ   (k2-2k+1)/k!
k=0

(Σ  ((z-1+k)/k!))/z, where z is any real number (or complex)
k=0

3-(Σ (k+1)/(k+3)!)
  k=0
  ∞
  Σ  ((3k)^2+1)/(3k)!
k=0
Also, e is equal to:
1/(2+1/(1+1/(2+1/(1+1/(1+1/(4+1/(1+1/(1+1/(6+1/(1+1/(1+1/(8+1/(1+1/(1+1/(10+1/...)))))))))))))))
Get the pattern?
And it is known that (in radians) e(ix)=cos(x)+i(sin(x)) (which is the base for e(i^π)=-1, but that's another story).
And the biggest non-complex value for x(1/x) is at e.
So e isn't just a bunch of equations, but is the base for a lot of important equations.
-The Roaring Thunder







































M2C2A: Episode 6⅓: Pi, a three part mathematical journey through the mathematical constant we all know and love, Part 2

[This proof is actually held by vihart, and shared by me, while the extra comes from Spanish Wikipedia, which inspired me to look for more digits of the not periodical sequence, which I found in http://mathworld.wolfram.com/PiContinuedFraction.html.]
Get a square, and draw a circle that touches all sides of the square
Step 1
Let's say that the square's sides all measure 1.
Now modify the sides like this
Step 2
so while the perimeter is still 4, now the circle is touched in 8 areas.
Modify it again and again, until you get...
A circle Step !
But is this REALLY a circle?
Nope!
A real circle has 0 sides, not ∞ like on this infinitely wrinkled circle.
So it is not a real circle, but an infinitely close imitation.
But what is the perimeter (remember this is an infinitely wrinkled circle with no curves, but ∞ sides)?
We started with 4, and by only modifying the sides, we didn't change the perimeter, only to get a final 4 as the perimeter!
So pi isn't four as anyone would have thought with this proof about making an imitation of a circle at first sight.
Extra:
Pi as a continued fraction?
To get pi to an accuracy of 11 digits, try "3+(1/(7+(1/(15+(1/(1+(1/(292+(1/(1+(1/(1+(1/(1+(1/(2+(1/3)))))))))))))))))", and continue the pattern with more digits I found here!
This is a great approximation, but can't you simply say 3.14159265358979.../1?
Not so exiting, but if you aren't worried about all numbers in the equation being integers, more understandable.
-The Roaring Thunder




















M2C2A: Episode 6⅔: Pi: A three part mathematic

Me comenta mi Roaring Thunder, que me faltó publicar esta entrega, por lo que arreglo mi error y les comparto el episodio 6 dos tercios Smile
Is pi random?
Nobody knows, but it looks random enough.
First of all: though pi will never change, randomness is still valid.
Second: Let's try to approve or not approve randomness.
One of the properties of randomness is that there are an approximately equal number of appearances of each of the possibilities (here 1, 2, 3, 4, 5, 6, 7, 8, 9 and 0). If you check in the digits of pi, you'll find this property true. Want to check it? Try going to this page and use Ctrl+F. ✓
Another property of randomness, though identical to the first in concept, but referring to the sequences of digits is also something you can try in the page of the last hyperlink, and with some short sequences, you will find it also true. ✓
You may start calling pi random, but we're still not sure. We need to know more digits to see if no sequences appear in the total of all pi digits (after all, you'd never know if a house is a house if you check atom by atom). So final answer?
MAYBE.
-The Roaring Thunder